Step of Proof: p-compose'_wf
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-compose'
wf
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
A
B
C
).
f
o'
g
A
(
C
+ Top)
latex
by (Auto
)
CollapseTHEN ((Unfold `p-compose\'` ( 0)
)
CollapseTHEN (((if (((first_nat 2:n
C
)) = 0) then (Repeat (MaAutoStep)) else (RepeatFor (first_nat 2:n) (MaAutoStep)))
)
C)
CollapseTHEN ((Try ((Complete (Auto
))
))
)
)
)
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
C
: Type
C1:
4.
g
:
A
(
B
+ Top)
C1:
5.
A
B
C
C1:
6.
x
:
A
C1:
7.
(
can-apply(
g
;
x
))
C1:
g
(
x
)
(
C
+ Top)
C
.
Definitions
f
o'
g
,
x
:
A
.
B
(
x
)
,
Void
,
if
b
then
t
else
f
fi
,
can-apply(
f
;
x
)
,
suptype(
S
;
T
)
,
x
.
A
(
x
)
,
Type
,
Unit
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
s
=
t
,
b
,
A
,
b
,
,
inl
x
,
do-apply(
f
;
x
)
,
P
Q
,
f
(
a
)
,
left
+
right
,
Top
,
S
T
,
x
:
A
.
B
(
x
)
,
t
T
,
x
:
A
B
(
x
)
Lemmas
top
wf
,
ifthenelse
wf
,
can-apply
wf
,
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bnot
wf
,
not
wf
,
assert
wf
,
bool
wf
,
do-apply
wf
origin